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The paper discusses the generation of polarized shear Alfvén waves radiated from a rotating
magnetic field source created via a phased orthogonal two-loop antenna. A semi-analytical three-
dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent
experiments in the UCLA large plasma device. Comparison of the simulation results with the
experimental measurements and the linear shear Alfvén wave properties, namely, spatio-temporal
wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the
wave dependences on the wave frequency, show good agreement. From the simulations it was found
that the energy of the Alfvén wave generated by the rotating magnetic field source is distributed
between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: ∼ 1/2
is the energy of the electromagnetic field, ∼ 1/2 is the kinetic energy of the ion fluid, and ∼ 2.5% is
the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from
the experimental data and using a fluid model defer by ∼ 1% and is ∼ 250 W for the experimental
parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics
simulations the rotating magnetic field source was found to be very efficient for generating shear
Alfvén waves.

I. INTRODUCTION

Shear Alfvén waves (SAW) have been observed in a
number of laboratory experiments1 and in nature in a
wide variety of astrophysical magnetized plasmas such
as planetary magnetospheres2, Earth’s aurora3, solar
corona4, etc. Because of its propagation nearly along
an ambient magnetic field5–7, SAW can transport energy
efficiently. The SAW can drive plasma currents, and in
fact, one may think of almost any low frequency cur-
rent system in magnetized plasmas as an Alfvénic wave
system. The SAW can play a major role in wave particle-
acceleration in various magnetized plasma configurations
in space4,8–11.

Although there has been a variety of SAW
experiments1, including generation by a rotating mag-
netic field source with the frequencies approaching the
ion cyclotron frequency Ωci used for a resonant ion cy-
clotron heating12,13, the basic physics of the interaction
of rotating magnetic fields (RMF) with magnetized plas-
mas in a wide frequency range below the ion cyclotron
frequency Ωci remain unexplored. The following ex-
perimental and theoretical study of the interaction of
the RMF with magnetized plasma addresses the spatio-
temporal structure, properties of the propagation and the
dispersion relation of the induced waves as a function of
the RMF and plasma parameters.

The interest in the generation of SAW by the RMF
sources arise in many settings, e.g., their possible appli-
cations to the controlled electron radiation belt remedi-
ation in the inner Van Allen belt. The SAWs generated
by a RMF source can create in the inner radiation belt a
non-local magnetic field gradient, which can lead to non-

resonant breaking of the adiabatic invariant µ = v2⊥/B
for the trapped electrons, and their pitch-angle scattering
into the loss cone.
Recently experiments on the generation of whistler14

and shear Alfvén waves15 by a RMF source were per-
formed on the Large Plasma Device (LAPD)16 at the
University of California, Los Angeles. These experiments
highlighted the properties of RMF antennas as efficient
sources of waves in plasmas in a broad frequency range.
The detailed description of the experimental setup and
the RMF radiation source for whistler and shear Alfvén
waves regimes can be found in Refs.14,15.
The main focus of the present paper is the develop-

ment of a 3D simulation model of the shear Alfvén waves
generated by the RMF source and the comparison of the
results with the experiments. The good agreement of
the 3D model with the experimental results suggests its
predictive capability.

II. EXPERIMENTS ON THE GENERATION
SHEAR ALFVÉN WAVES BY RMF

Two sets of the experiments on the generation of SAW
by the RMF source were performed on the LAPD, and
the general plasma parameters are presented in Table
I. The first experiment15 was mainly focused on the
measurements of the spatio-temporal structure of SAW
generated by the RMF source. In that experiment the
three components of the perturbed magnetic field were
measured in planes perpendicular to the ambient mag-
netic field at different z-locations, which provided three-
dimensional volumetric data of the wave magnetic field
and current structures over the course of ∼ 2.5 parallel
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wavelength of the SAW for the frequency ω = 0.54Ωci.
The main goal of the second set of experiments was a
measurement of the dependences of the generated wave
parameters on the driving frequency while the other pa-
rameters of the experiment were kept constant. The ma-
jor difference between the plasma parameters in two ex-
periments is that in the second setup the plasma den-
sity was lower (n = 1.3 × 1012cm−3 compared to n =
2.3×1012cm−3 in the first setup), and the electrons were
colder (Te = 1.5 eV compared to Te = 6 eV ). As a result
we measured higher values of wave magnitudes at the
same locations and for the same input current parame-
ters in the second experiment than in the first one.
The RMF source used in the experiments is a phased,

orthogonal two loop antenna. The antenna is composed
of two independent coils of 0.25 cm diameter solid cop-
per wire with three turns each. The diameter of the coils
are roughly 8 cm and 9 cm, which are ∼ 23 and ∼ 26
electron skin-depth λe = c/ωpe for the first experimen-
tal set. The coils are driven by two independent high
power resonant LRC circuits utilizing the inductance of
the antenna and the inherent line resistance, whose res-
onance frequencies can be adjusted with the capacitance
in a matched circuit, set ±90o out of phase so that the
total magnetic moment generated by the two coils had
left-handed or right-handed circular polarization. The
antenna is oriented in such a way that its center is lo-
cated on the symmetry axis of the LAPD-machine, and
one of the loops lies in the xz-plane, while the second lays
in the yz-plane. The coordinate system is defined with
z-axis along the ambient magnetic field (the central axis
of the machine) and y-axis pointing upwards. The driv-
ing frequency used in the experiment was in the range
80 − 355 kHz (0.21 − 0.93Ωci). The magnitude of the
current in the coils was up to ∼ 600 Amps.
The primary diagnostic used in the experiment is a

three-axis magnetic pickup coil19. The probe features
differentially wound loops that eliminate electrostatic
pickup when used in conjunction with a differential am-
plifier. The loops of the probe are wound around 1 mm
cube with ten turns each. The cube is mounted within a
glass tube and attached to a thin ceramic tube extend-
ing from the end of a stainless steel probe shaft. Using
a computer controlled data acquisition system the mea-
surements of the three components of perturbed mag-
netic field on a square area 41 × 41 points with 0.75 cm
spacing at several cross sectional planes perpendicular to
the ambient magnetic field were performed for different
driving frequencies and polarizations of the RMF source.

III. COMPARISON OF TWO-FLUID MHD
MODEL AND EXPERIMENT

A. Magnetic field structure

In the experiments it was found that the RMF source is
capable of driving relatively large magnitude field shear

Alfvén waves with the peak amplitudes up to a couple
of tens of Gauss for input current magnitudes 600 Amps
with polarization depending on that of the RMF source.
Although the wave field magnitudes were ∼ 10 Gauss (a
large magnitude for Alfvén waves produced in the LAPD)
in absolute value, they are only 1 % of the background
magnetic field B0, which is natural magnetic field scale
of the problem. It has been shown20 that large enough
amplitude SAWs can lead to wave current filamentation
and modification of the plasma density due to the pon-
deromotive force. However, in order for this nonlinear
effect to be important the wave magnitude should be of
order 10 % or higher of the background magnetic field20.
In our case of ∼ 1 % magnetic field perturbations a lin-
ear approximation should work fairly well in the wide
range of frequencies except the narrow frequency regions
around resonances, for example, at the ion cyclotron fre-
quency, where ion cyclotron resonance heating starts to
play an important role.

A three-dimensional (3D) two-fluid magneto-
hydrodynamics (MHD) code, described in detail in
the Appendix, was developed and implemented using
the MATLAB environment to simulate the experiments
with the parameters presented in Table I and a variable
driving frequency. A typical mesh of 180 × 180 × 1000
(32.4 × 106) grid points varying linear sizes of the
computational domain was used in the simulations of
Alfvén waves generated by the RMF source.

In both the experiments and 3D simulations the ob-
served wave magnetic field generated by the RMF an-
tenna lies primarily in the plane perpendicular to the am-
bient magnetic field (the magnitudes Bx ≈ By À Bz). In
the 3D simulations we found that the wave electric field
is nearly normal to both the background magnetic field
and the magnetic field perturbation. The wave electric
field component perpendicular to the ambient magnetic
field is much bigger than the parallel (the magnitudes
Ex ≈ Ey ∼ 100Ez), which is consistent with the prop-
erties of the SAWs5–7 radiated from a source with small
transverse size (that is high perpendicular wave number
k⊥)21.
Figures 1, 2, and 3 show the magnetic field structures

in one of the planes perpendicular to the ambient mag-
netic field measured in the experiment (Experiment set
2) and calculated using 3D two-fluid MHD model for dif-
ferent polarizations of the radiation source. The ambient
magnetic field points outwards of the plane of the figures.

In Fig. 1(a.1)-(a.4) the perturbed magnetic field struc-
ture measured in the experiment for left-handed polar-
ization of the RMF source at the plane z = 2.88 m
away from the antenna for four different instants of time
separated by 1/4 of the wave period (driving frequency
fd = 80 kHz) are presented. Fig. 1(b.1)-(b.4) show the
same plane magnetic field for the same time instants cal-
culated from the 3D two-fluid MHD model. As the time
goes (from left to right) the magnetic field in the plane
rotates clockwise around the ambient magnetic field.

Fig. 2(a.1)-(a.4) show the perturbed magnetic field
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TABLE I: Parameters of the experiments on generating SAW by the RMF source.

Parameter Experiment set 115 Experiment set 2
Ions He+ He+

Gas pressure ∼ 10−4 Torr ∼ 10−4 Torr
Ambient magnetic field 103 Gauss 103 Gauss
Plasma density 2.3± 0.3× 1012cm−3 1.3± 0.2× 1012cm−3

(microwave interferometer)
Electron temperature 6 ± 1 eV 1.5± 0.5 eV
Ion temperature 1 ± 0.5 eV 0.5± 0.3 eV
(Langmuir probe)
Electron plasma frequency 8.6× 1010s−1 6.4× 1010s−1

Electron skin-depth 3.5 mm 4.7 mm
Electron cyclotron frequency 1.76× 1010s−1 1.76× 1010s−1

Ion cyclotron frequency 2.4× 106s−1 2.4× 106s−1

Electron-neutral collision frequency17 2.8± 0.2× 105s−1 8.9± 0.1× 104s−1

Ion-neutral collision frequency ∼ 102s−1 ∼ 102s−1

Coulomb collision frequency18 4.75± 1.15× 106s−1 1.75± 0.4× 107s−1

FIG. 1: (Color online) Comparison of the magnetic field structure in the plane z = 2.88 m away from the radiating antenna
for four instants of time (t1 = 0.05792 ms, t2 = 0.06104 ms, t3 = 0.06416 ms, and t4 = 0.06728 ms from the beginning of the
pulse) separated by 1/4 of the wave period (driving frequency fd = 80 kHz) measured in the experiment (Experiment set 2)
((a.1) - (a.4)) and calculated using 3D model ((b.1) - (b.4)) for the left-handed polarization case. The ambient magnetic field
B0 = 1000 Gauss points outward of the plane of the picture.

structure measured in the experiment for case of a one-
loop antenna (the current laying in the x − z-plane was
turned off) for four different instants of time. Fig. 2(b.1)-
(b.4) show the magnetic field in the same plane for the
same times as in Fig. 2(a.1)-(a.4) from the simulations.
The magnetic field perturbation has nearly linear polar-
ization in this case, and as the time progresses (from left
to right) the magnetic field in the center of the plane

oscillates in the x-direction.

Figure 3 is similar to Figs. 1, 2 graphs except the po-
larization of the RMF source was set to be right-handed.
In this case the magnetic field rotates counterclockwise
around z-axis. One can see good agreement of the 3D
simulations and the experiment for all the cases. Note
also a good agreement of the phase between the model
and the experiment, which confirms that parallel phase
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FIG. 2: (Color online) Comparison of the magnetic field structure in the plane z = 2.88 m away from the radiating antenna
for four instants of time (t1 = 0.05792 ms, t2 = 0.06104 ms, t3 = 0.06416 ms, and t4 = 0.06728 ms from the beginning of the
pulse) separated by 1/4 of the wave period (driving frequency fd = 80 kHz) measured in the experiment (Experiment set 2)
((a.1) - (a.4)) and calculated using 3D model ((b.1) - (b.4)) for single loop antenna case. The antenna loop in the xz-plane is
turned off. The ambient magnetic field B0 = 1000 Gauss points outwards of the plane of the picture.

velocities in the experiment and the simulations are very
close.

The magnitude of the perturbed magnetic field has its
maximum in the center of the plane, that is on the sym-
metry axis of the machine, for all cases. The maximum of
the magnitude is found to be independent of the polariza-
tion of the RMF source and on whether one or two loops
are used. The characteristic transverse size of the wave
propagating along the ambient magnetic field is about
20 cm in extent, which is approximately twice the di-
ameter of the antenna loops, does not depend on the
frequency or the distance from the antenna along the z-
axis. One more feature of the magnetic field structure
is the two vortex structure with nearly constant distance
between the centers of these vortices ∼ 9 cm, which is
determined by the antenna size. Using ∇×B = 4π/cJ,
the centers of the vortices are found to correspond to the
maxima of field aligned currents. This is similar to a
pattern observed of Alfvén waves produced by two oscil-
lating current channels and with a helical antenna22,23.

Figure 4 shows the dependence of the magnitude of
wave magnetic field along the ambient magnetic field
measured in the experiment (Experiment set 1) - dia-
monds with uncertainty margins, approximation of the
experimental data by the exponentially decaying func-
tion A exp (−kiz) (A is the magnitude at z = 0, and ki
is imaginary part of the longitudinal wave number k||) -

dashed line, calculated in the 3D simulations - solid line,
and calculated using analytical dispersion relation Eq. (1)
- dash-dotted line for left-handed polarization of the
RMF and driving frequency fd = 206 kHz ∼ 0.54fci. All
of the curves shown exhibit an exponential decay with the
rates ki = 0.101 m−1 for the experiment, ki = 0.106 m−1

for the model and ki = 0.083 m−1 for the analytical dis-
persion relation, respectively, which are very close.

Figure 5 shows the dependence of the wave magnetic
field magnitude as a function of the transverse coordinate
x for four different locations along z-axis calculated using
the 3D model and measured in the experiment (Exper-
iment set 1). One can see good quantitative agreement
of the 3D model results with the experimental measure-
ments.

B. SAW dispersion relation

The SAW is an electromagnetic mode of magnetized
plasmas and propagates nearly parallel to the back-
ground magnetic field in the frequency range below the
ion cyclotron frequency ω < Ωci. For the parameters
of the experiment the dispersion relation for the kinetic
SAW including the effects of finite frequency and colli-
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FIG. 3: (Color online) Comparison of the magnetic field structure in the plane z = 2.88 m away from the radiating antenna
for four instants of time (t1 = 0.05792 ms, t2 = 0.06104 ms, t3 = 0.06416 ms, and t4 = 0.06728 ms from the beginning of the
pulse) separated by 1/4 of the wave period (driving frequency fd = 80 kHz) measured in the experiment (Experiment set 2)
((a.1) - (a.4)) and calculated using 3D model ((b.1) - (b.4)) for the right-handed polarization case. The ambient magnetic field
B0 = 1000 Gauss points outwards from the plane of the picture.

FIG. 4: (Color online) Dependence of the magnitude of per-
turbed magnetic field on distance z from the radiating an-
tenna along the ambient magnetic field measured in the exper-
iment (Experiment set 1) and calculated using 3D model. The
amplitude dependence predicted by analytical dispersion rela-
tion Eq. (1) is plotted as well. Driving frequency ω = 0.54Ωci,
left-handed polarization of the RMF.

sions can be written as24

ω2 − k2||V
2
A

(
1− ω2

Ωci
+ (ρsk⊥)

2

)
+ iωνek

2
⊥λ

2
e = 0, (1)

where λe = c/ωpe is the electron skin-depth, ρs = cs/Ωci

is the ion sound gyroradius, cs = (Te/mi)
1/2

is the sound
speed, Te is the electron temperature, k⊥ and k|| are
wave vector components perpendicular and parallel to

the ambient magnetic field, VA = B0/ (4πnimi)
1/2

is the
Alfvén speed, and νe is the effective electron collision
frequency. In general, the propagation of the SAW across
the ambient magnetic field is much slower than along
the ambient field (vph⊥ = ω/k⊥ ¿ vph|| = ω/k||)21,25,26

especially for the case when the wave is generated by a
source with small transverse size. As a result, the SAW
is within a fixed flux tube containing the source.

Introducing the angle θ between the direction of the
wave vector k and ambient magnetic field we can write
k⊥ = k sin θ and k|| = k cos θ, where k is the magnitude
of the wave vector. Substituting k⊥ and k|| into Eq. (1)
we can solve it for k as a function of ω and θ as
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FIG. 5: Dependence of the magnitude of perturbed magnetic field on x-coordinate perpendicular to the ambient magnetic
field for different cross sections (z = 1.917 m, z = 3.834 m, z = 5.751 m, and z = 7.9875 m) measured in the experiment
(Experiment set 1) and calculated using 3D model. Driving frequency ω = 0.54Ωci, left-handed polarization of the RMF.
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In Fig. 6 the dependences between the perpendicular
k⊥ and parallel k|| wave numbers calculated using Eq. (2)
for collisional and collisionless cases, and those obtained
from the numerical solution of 3D model are presented
for the driving frequency ω = 0.54Ωci. The parallel
wave numbers corresponding to the parallel phase veloc-
ity measured in the experiment are represented by two
vertical dashed lines. The general features of the curves
calculated from Eq. (2) and obtained numerically using
the 3D model are very similar, in particular close to each
other in the region of interest.
In Fig. 7 the dispersion relation (k|| as a function of

ω) is presented. Solid curves represent the dispersion
relation found using the 3D model for collisionless (¤)
and finite collision (◦) cases. The dashed line represents
the k|| on ω dependence found using Eq. (1) assuming
Re (λ⊥) = 18 cm. The symbols with uncertainty margins
represent experimental measurements. One can see good
qualitative agreement of the theory, simulations and the
experiment, although the difference between the experi-
ment and the 3D model predictions becomes significant
for the higher frequencies approaching the ion cyclotron
frequency.
In Fig. 8 the dependence of parallel phase velocity on

frequency found using 3D model, calculated from Eq. (1)
and measured in the experiment is presented. There is
good agreement between them.

C. 3D plasma current structure

Using the 3D two-fluid MHD model we found the
plasma current structure for the parameters of the exper-
iment (See Table I) and driving frequency fd = 0.54Ωci.

FIG. 6: (Color online) Dependence of transverse wave num-
ber k⊥ on the longitudinal wave number k|| for frequency
ω = 0.54Ωci given by analytical dispersion relation (Eq. (1))
and embedded in the 3D model for collisionless and collisional
cases. The longitudinal wave number k|| in the experiment are
presented by two vertical dashed lines. Solid vertical line rep-
resents wave number corresponding to Alfvén speed. Two
horizontal dashed lines represent transverse wave numbers
corresponding to λ⊥ = 9 cm and λ⊥ = 18 cm.

In Fig. 9 the 3D current structures for left-handed polar-
ization (Fig. 9(a)), single loop antenna (Fig. 9(b)), and
right-handed polarization of the RMF source (Fig. 9(c))
are presented.

The picture features isosurfaces of the total current.
The color shows the direction of the Jz component (red
- Jz is positive, blue - Jz is negative). The black stream-
lines show the perturbed magnetic field in the planes per-
pendicular to the z-axis, which has two vortex structure.
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FIG. 7: (Color online) The RMF SAW dispersion relation
obtained using 3D model for collisionless case (¤) and the
case with finite collisions given in the Table I (◦). The an-
alytical dispersion relation Eq. (1) is shown by dashed line.
Experimental data: 5 - one-loop antenna, × - right-hand
polarization, ¦ - left-hand polarization, 4 - reference15.

FIG. 8: (Color online) The RMF SAW phase velocity de-
pendence on driving frequency obtained using 3D model for
collisionless case (¤) and the case with finite collisions given
in the Table I (◦). The analytical dispersion relation Eq. (1)
is shown by dashed line. Experimental data: 5 - one-loop an-
tenna, × - right-hand polarization, ¦ - left-hand polarization,
4 - reference15.

The centers of the vortices correspond to the maxima of
the current crossing the plane. For all the cases the cur-
rent is very well confined by the ambient magnetic field.
The current structure found in the 3D simulations is very
similar to one found from the experimental measurements
using J = c/ (4π)∇×B (See Fig. 9 in Ref.15).

D. Amplitude of perturbation as a function of
frequency

In this section the dependence of the magnitude of the
perturbed magnetic field on the driving frequency ω is
discussed. In Fig. 10 the dependences measured in the

experiment (¦) and calculated using the 3D model in col-
lisionless and collisional cases for the experiment set 2
plasma parameters (See Table I) are presented. The cur-
rents in the loops are I1 = I2 = 500 Amps. One can
see a very good agreement between the first four exper-
imental points and the 3D model results. The depen-
dence of the magnitude of the wave magnetic field mea-
sured in the the experiment and calculated using the 3D
model is in a good agreement with another experiment
performed in the LAPD27. In that experiment the SAWs
were launched by a small (1 cm in diameter) circular cop-
per mesh antenna and propagated in the varying along
the axis of the machine background magnetic field, which
is equivalent to varying ω/Ωci ratio.
The difference between the model and the experiment

for the frequency ω = 0.93Ωci can be explained by the
following. As the driving frequency approaches the ion
cyclotron frequency the ion resonant heating by the wave
starts to play an important role and the wave transfers its
energy to the ions. Besides that, because of the ion heat-
ing the SAW energy can be transferred also to another
wave mode, namely, ion-acoustic wave, which propagates
omnidirectionally unlike SAWs. This processes can lead
to a dramatic decay of the wave magnitude and are not
included in the 3D model. The last one can be included
in the model by adding to the equation of motion of elec-
trons (Eq. (A1c)) and ions (Eq. (A1d)) of −∇pe and
−∇pi terms, respectively, where pe and pi are electron
and ion pressures. The pe and pi are determined by the
densities ne and ni through equations of states. Then
the system of equations (A1) can be closed by including
the continuity equations for electron and ion fluids.
For both the collisional and collisionless cases the SAW

mode does not propagate above the ion cyclotron fre-
quency, which explains the drop to zero of the 3D model
curves for the frequencies higher than ion cyclotron fre-
quency. The increase of the wave magnitude with the
driving frequency can be explained by the fact that the
parallel group velocity vg = ∂ω/∂k|| of the SAW, that is
the wave energy propagation parallel to the ambient mag-
netic field, decays as the frequency increases (See Fig. 7).
This means that the wave energy density and the wave
magnitude increase. The maximum of the wave energy
in the collisionless 3D model curve corresponds to the
parallel wave length nearly matching the diameter of the
antenna Da ≈ λ||/2. The difference in the slopes of the
collisional and collisionless 3D model curves is due to the
dependences presented are for z = 2.88 m (Fig. 10), and
the spatial decay rate along the ambient magnetic field
due to collisions increase with frequency increasing.

E. Energy balance of the wave

The total energy generated by the RMF antenna which
couples to the plasma wave is shared by four effects: the
energy of the magnetic field uM = 1

2µ0
B2

w, energy of the

electric field uE = 1
2ε0ε⊥E

2
w, and the kinetic energy of
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FIG. 9: (Color) Isosurfaces of total plasma current (J =
√

J2
x + J2

y + J2
z ) for the same time instant calculated using 3D model

for left-hand polarization (a), one-loop antenna (b) (the current laying in xz-plane is turned off), and right-hand polarization
cases (c). Red color corresponds to the isosurface with positive Jz-component of the plasma current, and blue - with negative
Jz-component. The structures of the perturbed magnetic field in the planes perpendicular to z-axis are shown by black stream
lines. The ambient magnetic field B0 = 1000 Gauss is directed along z-axis. The radiating antenna is shown at the origin.
Driving frequency ω = 0.54Ωci. Note that the length of the box shown is 10 m, and the size across z-axis is only 20 cm.

electrons uKe, and ions uKi. Here ε⊥ is the perpendicular
component of the plasma dielectric permittivity tensor,
which is in general a function of plasma parameters and
the wave frequency. To first order the magnetic and elec-
tric field components of the electromagnetic mode wave
energy in the absence of charge separation are approxi-
mately equal. From the experimental measurements we
can quite accurately derive the value of uM . In Ref.15

the wave magnetic field power was estimated as

P = VA
δB2

w

µ0
A, (3)

where VA is Alfvén speed δBw is the magnitude of the
perturbed magnetic field, and A is the characteristic cross
section of the wave. The wave power for the Experi-
ment set 1 estimated using Eq. (3) was ∼ 200 W . The
wave power can be obtained more accurately using the
Poynting vector crossing the plane perpendicular to the
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FIG. 10: Dependence of the magnitude of perturbed magnetic
field at z = 2.88 m away from the antenna obtained using
3D model for collisionless case (¤) and the case with finite
collisions (◦) and measured in the experiment (¦) (Experiment
set 2) for two-loop antenna case with left-hand polarization
on the driving frequency. Magnitude of currents in the loops
I1 = I2 = 500 Amps. The large graph and the inset show
the same dependences but with different scale on magnitude
of Bnorm axis.

ambient magnetic field, given by

S =
1

2

(
ε0ε⊥E2

w +
1

µ0
B2

w

)
vg|| ≈

1

µ0
B2

wvg||, (4)

where vg|| = ∂ω
∂k||

is the parallel component of the wave

group velocity. From Fig. 7 one can see that for the fre-
quency ω = 0.54Ωci the group velocity vg|| . vph||. Thus,
the total energy passing trough the plane perpendicular
to the ambient magnetic field per unit time is

P =

∫
SdA ≈ vph||

µ0

∫
B2

wdA. (5)

The power calculated from the experimental data us-
ing Eq. (5) as a function of the distance from the an-
tenna is presented in Fig. 11 as diamonds. the Dashed
line in Fig. 11 represents the A exp (−bz) approximation
of the experimental points. The exponential decay rate
is determined by the collisions and is consistent with the
exponential decay of the magnetic field magnitude (See
Fig. 4). The antenna power which couples to the wave
magnetic field is 2PM (z = 0) ≈ 250 W (2 is for the prop-
agation in two directions along positive and negative z-
directions) and the total electromagnetic energy of the
wave is ∼ 500 W . There are no experimental measure-
ments of the kinetic energies of the electrons and ions,
except, it should be the same order as the magnetic field
energy.

Using the 3D model we can calculate all components
of the wave energy and the total power of the wave. The
components of the wave energy as a function of time we

FIG. 11: Dependence of the magnetic component of the wave
power propagating along the ambient magnetic field as a func-
tion of the distance from the antenna calculated from the ex-
perimental data (¦). Dashed line represent A exp (−bz) of the
experimental points. (Experiment set 1, driving frequency
ω = 0.54Ωci, magnitude of the currents I1 = I2 ≈ 600 A).

calculate as

EM (t) =
1

2µ0

∫

V

|B (t, x, y, z)|2 dV, (6a)

EKe(t) =
nme

2

∫

V

|ve (t, x, y, z)|2 dV (6b)

EKi(t) =
nmi

2

∫

V

|vi (t, x, y, z)|2 dV (6c)

where V is the whole computational domain, n is the
plasma density, me, mi and ve and vi are electron and
ion masses and velocities, respectively. Taking the time
derivatives of Eqs. (6) we get the components of the
power corresponding to the electric and magnetic fields
and the electron and ion fluids. In the collisional case for
a propagating mode there are no sinks of the energy in
the model and the power injected by the antenna is equal
to the sum of the wave power components.
In Fig. 12 the components of the wave energy as a

functions of time for collisionless (Fig. 12(a)) and colli-
sional (Fig. 12(b)) cases with experimental parameters
(Experiment set 1) are shown. The time derivatives of
the dependences of the energy components give the cor-
responding powers. From the 3D simulation in the col-
lisionless case we found that the magnetic field power is
PM = 253.0W (compared to 250W - the magnetic power
estimated from the experimental data). The power which
couples to the motion of ions is PKi = 500.3 W , which is
1.98PM , and the power which couples to the motion of
electrons is PKe = 26.19 W . The total power radiated
by the antenna in this case was found to be ∼ 1030 W
and during the 100 µs pulse 103 mJ is injected by the
antenna. Thus, for the driving frequency ω = 0.54Ωci

the antenna power which couples to the wave is nearly
equally distributed between the electromagnetic compo-
nent and kinetic energy of ions, and the kinetic energy of
electrons is of order ∼ 2.5% of total wave energy.
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FIG. 12: Dependences of the components of the wave en-
ergy on time calculated using 3D model for collisionless (a)
and collisional (b) cases. The time derivatives give the
power corresponding to each component (Experiment set 1,
driving frequency ω = 0.54Ωci, magnitude of the currents
I1 = I2 ≈ 600 A).

In the collisionless case the wave energy grows linearly
with time, as all energy injected by the antenna is con-
served, while in the presence of the collisions the energy
has a sink. This results in the decay of the time deriva-
tives of the component energy dependencies with time.
As the time progresses the propagating wave occupies
larger volume, and larger parts of the ion and electron
fluids are involved in motion. As a result the amount
of energy lost due to the collisions increases. Asymptoti-
cally the wave comes to an energetic equilibrium with the
media, when the power injected by the antenna is equal
to the energy lost due to collisions per unit time.

IV. CONCLUSION

It is demonstrated in the experiments and three-
dimensional cold two-fluid magnetohydrodynamics sim-
ulations that the rotating magnetic field antenna com-
posed of two independent coils with alternating cur-
rents set ±90o out of phase can efficiently generate shear
Alfvén waves with high transverse wave number with
polarization depending on that of the RMF antenna.

The results of semi-analytical 3D model simulations were
compared with the measurements in the LAPD experi-
ments and found to be in a good agreement for wide rage
of the parameters.
The spatio-temporal wave structures calculated from

the simulations are very close to those measured in the
experiments. It is shown in the experiment15 and calcu-
lated using the 3D model that the SAWs generated by the
RMF carry significant field aligned currents which prop-
agate parallel to the ambient magnetic field lines without
noticeable spreading in the transverse direction.
The theoretical dispersion relation of the SAW, the

dispersion relations calculated using 3D model and mea-
sured in the experiment are very close for a broad fre-
quency range. The exponential decay rate of the wave
along the ambient magnetic field is determined by the
collisions.
The dependences of the magnitude of the wave mag-

netic field on the driving frequency measured in the ex-
periment and calculated from 3D model are very close
to each other except for the frequencies very close to the
ion cyclotron frequency. This feature can be explained
by the fact that the resonant wave-particle interaction
and ion sound wave mode are not included in the model.
The power of the magnetic field of the generated wave

is calculated from the experimental data (Experiment set
1) and found to be∼ 250W for the driving frequency ω =
0.54Ωci, and the current magnitudes I1 = I2 = 600 A.
The power found in 3D simulations for the magnetic field
power for the experimental parameters is 253 W , which
differs from the experimental value only by ∼ 1%. The
wave power corresponding to the other components of the
wave, namely, the kinetic energy of electron and ion fluid
calculated from 3D simulations are PKe = 26.19 W , and
PKi = 500.3 W , respectively. Thus, the energy of the
wave is distributed as: ∼ 1/2 in the electromagnetic field
energy, ∼ 1/2 in the kinetic energy of ions, and ∼ 2.5% in
the kinetic energy of electrons. The fraction of the wave
energy carried by the electrons gives an estimate of the
error we would make for the experimental parameters if
we considered the electrons as massless and modeled the
plasma by a single-fluid MHD.
Thus, the 3D two-fluid MHD model was verified using

the experimental results. Good overall agreement of the
3D model results with the experimental measurements
for wide ranges of the experimental parameters shows
good predictive capability of the 3D model, and it can
be used for the parameters that are hard to achieve in
laboratory plasmas or space plasmas.
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APPENDIX A: LINEAR TWO-FLUID MHD
MODEL

In the Appendix we describe a linear 3D spectral model
which was used to simulate the propagation of shear
Alfvén waves generated by a RMF source. Following
the EMHD approach28–31, which was implemented into
linear14 and nonlinear32 3D EMHD spectral codes, we
start form the Maxwell equations with the displacement
current neglected. In the EMHD model the ions treated
as motionless. While this approximation works fairly well
for the frequency range well above the lower-hybrid reso-
nance, it becomes unacceptable for the frequencies bellow
ion cyclotron frequency Ωci, when the motion of ions be-
come important in the wave propagation33,34. Thus, we
can not consider the ions motionless.
On the other hand we would like the model to be able

to produce valid results for broad frequency range in-
cluding frequencies well above ion cyclotron frequency.
In that case when the wave frequency approaches the
lower-hybrid resonance frequency, we can not consider
electrons as massless, as it is often done in single fluid
MHD models. In order to satisfy both of the require-
ments we should consider the plasma as a media con-
sisting of two cold fluids (electrons and ions) and resolve
equation of motion for both of them.
The equations governing a quasineutral cold two-fluid

plasma can be written as

∇×E =− 1

c

∂B

∂t
, (A1a)

∇×B =
4π

c
J+

4π

c
Jext, (A1b)

∂ve

∂t
+ (ve ·∇)ve =− e

me

(
E+

1

c
ve ×B

)
− (A1c)

− νenve − νei (ve − vi) ,

∂vi

∂t
+ (vi ·∇)vi =

e

mi

(
E+

1

c
vi ×B

)
− (A1d)

− νinvi − νie (vi − ve) ,

where indexes e and i denote electrons and ions, J is a
plasma current, Jext is an external current source, and
νen, νin, νei, and νie are effective frequencies of colli-
sions of electrons and ions with neutrals and Coulomb
collisions. The last terms in Eqs. (A1c) and (A1d) corre-
spond to momentum exchange between the electron and
ion fluids due to Coulomb collisions. The conservation of
the total momentum of two-fluid system requires that

νie =
me

mi
νei. (A2)

Let us decompose the total magnetic field as B =
B0 + B′, where B0 is stationary uniform ambient mag-
netic field, and B′ is the wave perturbation. The scales
of the Eqs. (A1) are determined by two frequencies: elec-
tron plasma ωpe and electron cyclotron Ωce frequencies.
Normalizing length by the electron skin-depth λe = c/ωpe

and time by the inverse of electron cyclotron frequency
T = Ω−1

ce , the dimensionless variable become t = t/T ,
x = x/λe, v = Tv/λe, B = B/B0, E = (cTE)/(λeB0)
and ν = ν/Ωce.
Consider the case of small amplitude wave (|B′| ¿

|B0|). In that limit linearized Eqs. (A1) can be written
in dimensionless form as

∇×E = −∂B

∂t
, (A3a)

∇×B = vi − ve + 4πJext, (A3b)

∂ve

∂t
= − (

E+ ve × b
)− νenve − νei (ve − vi) ,

(A3c)

∂vi

∂t
= mr

(
E+ vi × b

)− νinvi −mrνei (vi − ve) ,

(A3d)

where we neglected all nonlinear terms. mr is the ratio
between electron and ion masses (mr = me/mi), B is
dimensionless perturbed magnetic field and b is the unit
vector in the direction of the ambient magnetic field B0,
chosen to be along z-axis (b = ez). We used also for the
plasma current J = en (vi − vi), where for quasineutral
plasma n = ne = ni. From this point to the end of the
paper we will work only with dimensionless variable, so
we drop the bars in the remaining section.
The external current Jext entering Eq. (A3b), which is

used to drive the RMF wave, can be introduced in the
model as loops of an antenna. In the case of interest the
size of the antenna is much smaller than the computa-
tional domain. That means that if we want to resolve
the boundary problem on the current elements we have
to use either nonuniform or very fine mesh with a large
number of grid points. In the case of infinitely thin wires
the current and the fields become singular. In order to
avoid singularity in solution and remove the necessity to
resolve boundary problem on the current elements we de-
compose the electric and magnetic field as E = E′+Eext

and B = B′ +Bext, where

Eext = − ∂

∂t
Aext, Bext = ∇×Aext. (A4)

Such decomposition can be chosen more or less ar-
bitrary with the only requirement that the fields Eext

and Bext have the same singularity at the vicinity of the
external current as the total fields. One of the possi-
ble choices for the external vector potential Aext is the
screened potential satisfying the equation

∇×∇×Aext + (1 +mr)Aext = 4πJext. (A5)
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The principle of superposition is applicable to the vec-
tor potential Aext, and it can be calculated for each
current independently. If the current elements does not
move in space and the time dependence appears only as
f(t) factor in J (x, t), the vector potential Aext should
be calculated only once at the very first time step. The
ways of solving of Eq. (A5) for particular current config-
urations are described in Ref.14,32.
Let introduce new variables:

V = mrve + vi, j = vi − ve. (A6)

which are the mass velocity of the two-component fluid
up to the coefficient (1 +mr) and the total current.
In these variables using Eqs. (A4),(A5) the system of

Eqs. (A3) can be rewritten as

∇×∇×E′ =− ∂j

∂t
− ∂

∂t
Aext, (A7a)

∂V

∂t
=mrj× ez + αV + βj, (A7b)

∂j

∂t
=(1 +mr)E

′ + (V − (1−mr) j)× ez+

+ γV + δj− (1 +mr)
∂

∂t
Aext, (A7c)

where

α = −νin +mrνen
1 +mr

, (A8a)

β = mrγ, (A8b)

γ =
νen − νin
1 +mr

, (A8c)

δ = − (1 +mr)
2νei + νen +mrνin
1 +mr

. (A8d)

All of these coefficients are just real number parameters
depending on the effective collision rates and the elec-
tron/ion mass ratio.

Consider an arbitrary vector field F and its Fourier
components F∗. For any vector F

k · (F∗ × ez) = −i (∇× F)
∗
|| = −iF ∗

c||, (A9)

where F ∗
c|| is the Fourier component of the projection of

∇×F on z-axis, that is parallel to the ambient magnetic
field.

kzF
∗
z = −i

(∇ · F||
)∗

= −iF ∗
d||, (A10)

where F ∗
d|| is the Fourier component of the divergence of

the vector F component parallel to the ambient magnetic
field.

k · F∗ − kzF
∗
z = −i (∇ · F⊥)

∗
= −iF ∗

d⊥, (A11)

where F ∗
d⊥ is the Fourier component of the divergence

of the vector F component perpendicular to the ambient
magnetic field.
Using definitions (A9), (A10), and (A11) Eqs. (A7)

give in the Fourier domain

∂

∂t
X = LX + S, (A12)

where

X =




j∗c||
j∗d||
V ∗
c||

V ∗
d⊥
C∗



, S = − (1 +mr)

∂

∂t




A∗
c||

A∗
d||
0
0
0




(A13)

and the system matrix

L =




Kδ −K (1−mr) Kγ −K 0

Kz (1−mr) Kδ γ2(K−2Kz)−Kz

1+γ2 −γ γ2K+Kz

1+γ2

γ3(K−Kz)
1+γ2

mrγ mr α 0 0
mr −mrγ 0 α 0
0 0 0 0 α




, (A14)

where

C∗ = V ∗
d⊥ − 1

γ
V ∗
c|| +

(
1 +

1

γ2

)
V ∗
d||. (A15)

and

K =
k2

1 +mr + k2
, Kz =

k2z
1 +mr + k2

. (A16)

Solution of Eq. (A12) can be written as14,32

X (k, t) = U (k) eΛ(k)tU−1 (k)X (k, 0) + (A17)

+ U (k) eΛ(k)t

∫ t

0

e−Λ(k)t′U−1 (k)S (k, t′) dt′,

where Λ (k) and U (k) are diagonal matrix of eigenval-
ues and modal matrix that consists of columns of corre-
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sponding eigenvectors, which decompose the system ma-
trix Eq. (A14) as

L = UΛU−1 (A18)

and do not depend on time. Thus, for a given geometry
they can be computed for every k only once. Particularly,
in the case of harmonically driven field and zero initial
velocities of electron and ion fluids we get

S (k, t) = S (k) e−iωt, X (k, 0) = 0 (A19)

and the solution (A17) become

X (k, t) = U (k)M (k, t)U−1 (k)S (k) , (A20)

where

M (k, t) =
(
eΛ(k)t − Ie−iωt

)
(Λ (k) + iωI)

−1
, (A21)

where I is identity matrix.

Thus, the problem reduces to finding eigen values and
eigen vectors of the system matrix (A14) for every pos-
sible k. To find the eigenvalues of L (k) we need to solve
characteristic equation which can be written in the form

(α− λ)

∣∣∣∣∣∣∣∣

Kδ − λ −K (1−mr) Kγ −K

Kz (1−mr) Kδ − λ γ2(K−2Kz)−Kz

1+γ2 −γ γ2K+Kz

1+γ2

mrγ mr α− λ 0
mr −mrγ 0 α− λ

∣∣∣∣∣∣∣∣
= 0. (A22)

If we replace λ by −iω we will get the dispersion re-
lation for the two-fluid system. The first term of the
Eq. (A22) does not depend on k and describes the mode
which is determined by electron-neutral and ion-neutral
collision rates. The variable C∗ (Eq. (A15)) depends only
on the components of the mass velocity, and this mode
is essentially a friction between the two-fluid system and
neutral gas background. In the case of zero initial mass
velocity this mode is not excited, and the variable C∗ be-
comes an integral of motion and stays zero all the time.

The 4 × 4 determinant in Eq. (A22) gives in general
case forth order equation for λ. All the coefficients of the
equation are real. It means that the forth order equation
has two pairs of complex conjugate roots. The real parts
of the roots correspond to spatial decay rates, and the
imaginary parts determine the wave propagation in ±
directions with respect to the background magnetic field.

In the collisionless case (νei = νen = νin = 0) the
4×4 determinant in Eq. (A22) simplifies to the dispersion
relation

ω4−
(
mr (K +Kz) + (1−mr)

2
KKz

)
ω2+m2

rKKz = 0.

(A23)

Introducing θ be the angle between the direction of
the wave vector k and the ambient magnetic field (kz =
k cos θ), we get from Eq. (A23)

Ak4 +Bk2 + C = 0, (A24)

where

A =ω4 + cos2 θ
(
m2

r − (1−mr)
2ω2

)− (A25a)

−mrω
2
(
1 + cos2θ

)
,

B =ω2 (1 +mr)
(
2ω2 −mr

(
1 + cos2θ

))
, (A25b)

C =ω4 (1 +mr) . (A25c)

Note that the parameter mr < 10−4 ¿ 1 for, let say,
He plasma, but during the derivation of the equations
we did not neglected mr compare to 1, so all the results
are valid even for electron-positron plasma (mr = 1).
Since, we kept finite masses for both electrons and ions
in the model described, it benefits in the ability of the
model give valid results in the broad frequency range
in different regimes: the Alfvén waves (below ion cy-
clotron frequency) and the whistler waves (well above the
lower-hybrid resonance). As a matter of fact the EMHD
model14,28–32 is built in the two-fluid model as the limit
mr → 0.
In Fig. 13 Bx component (perpendicular to the plane

of the picture) of the perturbed magnetic field for differ-
ent regimes calculated using described two-fluid MHD 3D
model is presented in collisionless case. In Fig. 13(a) the
wave generated with the driving frequency ω = 0.5Ωci

is presented. Note that in the Fig. 13(a) the scale along
z-axis is 10 times larger than along y-direction. One can
see that the wave generated is very well confined by the
ambient magnetic field and the magnitude does not de-
cay along z-axis, which are the properties of the Alfvén
waves in collisionless plasmas. Unlike the Alfen wave
regime the wave generated with frequency ω = 0.05Ωce

(See Fig. 13(b)) has cone structure and decay of the mag-
nitude along z-axis due to spreading of the wave energy
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FIG. 13: (Color online) Bx component (perpendicular to the
plane of the picture) of perturbed magnetic filed in the plane
containing the loop with current (ring at the origin with ra-
dius r = 10λe) in different wave regimes calculated using two-
fluid MHD 3D model in collisionless case: (a) - Alfvén wave
(ω = 0.5Ωci), (b) - whistler wave (ω = 0.05Ωce).

inside the propagation cone, which is characteristic of
whistler waves. For the frequency ω = 0.05Ωce we com-
pared the results of 3D two-fluid calculations with the
results found using 3D EMHD model14, and found that
the relative difference between those has order of 10−4

for these parameters which is the order of mr.
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